1
2
3
4
5
6

Das Anwendungsspektrum von Verfahren der Künstlichen Intelligenz (KI) ist nahezu unbegrenzt. Zum einen werden neue intelligente und innovative Anwendungen ermöglicht, die nur mit KI-Algorithmen möglich sind. Mindestens genauso interessant ist aber der Einsatz der KI zur Verbesserung und Optimierung bestehender Prozesse, Projekte, Produkte und Geschäftsmodelle. Zudem eröffnen sich mit KI neue Formen der Interaktion. Die Nutzung entwickelt sich eher zu einer Zusammenarbeit zwischen Mensch und KI. In vielen Fällen kann wie bei den bereits bekannten Sprachassistenten sprachlich mit solchen Systemen interagiert werden. Mit dem KI-Trainer Programm unterstützt das Kompetenzzentrum Usability kleine und mittlere Unternehmen dabei, Anwendungsmöglichkeiten von KI in ihren Geschäftsmodellen zu finden und zu erproben. Mehr zu den Angeboten des KI-Trainer Programms finden Sie hier.

Doch auch schon vor dem Start des KI-Trainer Programms hat sich das Kompetenzzentrum mit dem Thema Künstliche Intelligenz befasst. Alle Beiträge dazu finden Sie im Folgenden.

Nachrichten zum Thema

KI-Trainer Schwerpunkt 2: Entwicklung
Rückblick: KI-Trainer Entwicklung - Online-Seminar Reihe im September
23.09.20
Im September fand die zweite Durchführung unserer fünfteiligen KI-Trainer Online-Seminar Reihe mit dem Schwerpunkt "Entwicklung" statt.
HCD für KI - Teil 2: Wizard-of-Oz Prototyping Workshop, KI-Trainer: Entwicklung - Grundlagen Deep Learning Teil 1, KI-Trainer: Entwicklung - Grundlagen Deep Learning Teil 2, KI-Trainer: Entwicklung - Python-Entwicklungstools für Deep Learning, …
KI-Trainer: Das Programm im Oktober
22.09.20
Die KI-Trainer melden sich zurück aus der Sommerpause und bieten Ihnen im Herbst erneut ein Füllhorn an Seminaren und Workshops rund um das Thema Künstliche Intelligenz (KI). Hier finden Sie die kommenden Events des KI-Trainer Programms im Überblick.

Veranstaltungen zum Thema

September2020

Dienstag22.09.2015:00-01.10.2016:30
Online
E-Learning Reihe zur Entwicklung von Sprachassistenzsystemen/Chatbots

Chatbots sind als Dienstleistung mittlerweile weit verbreitet und in digitale Angebote integriert. Der zunehmende Einsatz von Sprachassistenten in Haushalten bietet neue Möglichkeiten in der Kundeninteraktion und –beziehung, wird jedoch als Kanal selten genutzt. Das, obwohl, neue Erlebnisse mit einem entsprechenden Mehrwert Kunden in ihrem persönlichen Zuhause zur Verfügung gestellt werden können. Die Herausforderungen liegen hier zum einen in der Entscheidung für den richtigen Kanal zur Vermittlung von Inhalten wie beispielsweise ein Chatbot oder Sprachassistent, als auch die kundengerechte Gestaltung von Sprachinhalten.

Die Anwendungsfelder sind dabei vielfältig: Beispielsweise könnte ein Bestell- und Lieferservice für ein Abendessen mittels Sprachassistent umgesetzt werden. Um auch mittelständigen Unternehmen den Einsatz eines Sprachassistenzsystems näher zu bringen, soll unsere E-Learning Reihe den Teilnehmern die Konzeption und Umsetzung eines Sprachbots zu vermitteln. Hierfür werden als erstes das benötigte Wissen und Aufgaben in einem einfachen Rollenspiel exploriert und ein erster Interaktionsentwurf festgehalten. Im nächsten Schritt wird dieser in einem Experiment mit den Teilnehmern getestet und iterativ verbessert, bis das Konzept und Interaktionsmodell eine gewünschte Qualität erreicht. Danach kann der Sprachassistent implementiert und getestet werden. Dafür wird das Programm Google Dialogflow verwendet. Dieses ermöglicht den Nutzern ohne großes IT-Wissen die erfolgreiche Erstellung eines Sprachassistenzsystems.

Melden Sie sich jetzt für die E-Learning Reihe an:

Ticket zur E-Learning Reihe

Termine:

- 22.09.2020: 15:00-16:30 Uhr

- 24.09.2020: 15:00-16:30 Uhr

- 29.09.2020: 15:00-16:30 Uhr

- 01.10.2020: 15:00-16:30 Uhr

Weitere Informationen
Dienstag29.09.2011:00-12:00
Vortrag zu Usability und User Experience für Künstliche Intelligenz - KI Info Slam

Im Rahmen des KI Info Slam erwarten Sie Impulsvorträge verschiedenen KI-Themen und -Projekten sowie Informationen zu unseren Angeboten. Dieses mal: Ein Einblick in die Herausforderungen der Gestaltung von KI-Anwendungen und die KI-Pilotprojekte des Kompetenzzentrum Usability. Im Anschluss erhalten Sie einen kompakten Überblick über unsere kostenlosen KI-Angebote für den Mittelstand und sind herzlich zurm Austausch über Ihre Fragen und Erfahrungen zum Thema KI eingeladen.

Geplantes Programm:

11:00 – 11:30 Uhr: Impulsvortrag von KI-Trainer Manuel Kulzer

11:30 – 11:40 Uhr: Vorstellung der KI-Angebote des Kompetenzzentrum Usability

11:40 – 12:00 Uhr: Offene Diskussion, Fragen und Erfahrungsaustausch

Weitere Informationen

Oktober2020

Montag05.10.2010:00-12:00
Online
KI-Trainer: Entwicklung - Python Grundlagen für Deep Learning Teil 1

Hier anmelden

Mit den geeigneten Plattformen und Entwicklungswerkzeugen lassen sich KI-Projekte sehr schnell umsetzen. Insbesondere die vielversprechenden Deep-Learning-Technologien besitzen eine Vielzahl an Entwicklungstools, die es KI-Entwicklern erlauben, weniger Zeit für aufwendige Grundlagen-Implementationen aufzubrauchen und dafür mehr Zeit für die Problemlösung selbst zu finden.

In mehreren Teilen geht es bei uns hier deshalb rund um die Entwicklung: angefangen bei einem Einstieg in die Pythonprogrammierung über die Betrachtung gängiger Entwicklungstools und -frameworks bis hin zu Deep-Learning-Grundlagen und Implementation. Diese Reihe erlaubt es Programmierern ohne KI-Kenntnisse, startbereit für Deep Learning zu werden. An den einzelnen Teilen kann sequenziell teilgenommen werden, benötigte Kenntnisse in späteren Teilen werden in vorherigen Teilen vermittelt. Einzig für den ersten Teil sollten allgemeine Programmierkenntnisse vorhanden sein.

 

1: Python-Grundlagen für Deep Learning

In dieser zweiteiligen Reihe werden die Grundlagen der Python-Programmierung als Basis für Deep Learning nähergebracht. Die folgenden Themen werden behandelt:

- Jupyter-Notebook-Grundlagen

- Die Syntax gängiger Python-Strukturen, u. a. Funktionen, Klassen, Variablen

- Python-Datenstrukturen (List, Dictionary, Tuple)

- Python-Module

Anhand von Jupyter-Notebooks werden die Inhalte interaktiv erarbeitet. Übungen im Laufe der Veranstaltung geben Teilnehmern die Möglichkeit, die Inhalte zu festigen.

 

Voraussetzungen:

Allgemeine Programmierkenntnisse: Teilnehmer sollten bereits Kenntnisse von einer anderen, objektorientierten Sprache mitbringen. So sollten folgende Fragen beantwortet werden können: Wie ist ein Programm aufgebaut? Was für Datentypen gibt es? Was sind Funktionen/Variablen/Ablaufstrukturen/Klassen?

 

Zielgruppe:

Entwickler ohne Pythonkenntnisse, die in Zukunft Deep-Learning-Algorithmen implementieren möchten.

 

Details und Termine zu anderen Teilen dieses Schwerpunktes finden Sie hier.

Weitere Informationen
Montag05.10.2014:00-16:00
Online
KI-Trainer: Entwicklung - Python Grundlagen für Deep Learning Teil 2

Hier anmelden

Mit den geeigneten Plattformen und Entwicklungswerkzeugen lassen sich KI-Projekte sehr schnell umsetzen. Insbesondere die vielversprechenden Deep-Learning-Technologien besitzen eine Vielzahl an Entwicklungstools, die es KI-Entwicklern erlauben, weniger Zeit für aufwendige Grundlagen-Implementationen aufzubrauchen und dafür mehr Zeit für die Problemlösung selbst zu finden.

In mehreren Teilen geht es bei uns hier deshalb rund um die Entwicklung: angefangen bei einem Einstieg in die Pythonprogrammierung über die Betrachtung gängiger Entwicklungstools und -frameworks bis hin zu Deep-Learning-Grundlagen und Implementation. Diese Reihe erlaubt es Programmierern ohne KI-Kenntnisse, startbereit für Deep Learning zu werden. An den einzelnen Teilen kann sequenziell teilgenommen werden, benötigte Kenntnisse in späteren Teilen werden in vorherigen Teilen vermittelt. Einzig für den ersten Teil sollten allgemeine Programmierkenntnisse vorhanden sein.

 

1: Python-Grundlagen für Deep Learning

In dieser zweiteiligen Reihe werden die Grundlagen der Python-Programmierung als Basis für Deep Learning nähergebracht. Die folgenden Themen werden behandelt:

- Jupyter-Notebook-Grundlagen

- Die Syntax gängiger Python-Strukturen, u. a. Funktionen, Klassen, Variablen

- Python-Datenstrukturen (List, Dictionary, Tuple)

- Python-Module

Anhand von Jupyter-Notebooks werden die Inhalte interaktiv erarbeitet. Übungen im Laufe der Veranstaltung geben Teilnehmern die Möglichkeit, die Inhalte zu festigen.

 

Voraussetzungen:

Allgemeine Programmierkenntnisse: Teilnehmer sollten bereits Kenntnisse von einer anderen, objektorientierten Sprache mitbringen. So sollten folgende Fragen beantwortet werden können: Wie ist ein Programm aufgebaut? Was für Datentypen gibt es? Was sind Funktionen/Variablen/Ablaufstrukturen/Klassen?

 

Zielgruppe:

Entwickler ohne Pythonkenntnisse, die in Zukunft Deep-Learning-Algorithmen implementieren möchten.

 

Details und Termine zu anderen Teilen dieses Schwerpunktes finden Sie hier.

Weitere Informationen
Dienstag06.10.2010:00-12:00
Online
KI-Trainer: Entwicklung - Python-Entwicklungstools für Deep Learning

Hier anmelden

Mit den geeigneten Plattformen und Entwicklungswerkzeugen lassen sich KI-Projekte sehr schnell umsetzen. Insbesondere die vielversprechenden Deep-Learning-Technologien besitzen eine Vielzahl an Entwicklungstools, die es KI-Entwicklern erlauben, weniger Zeit für aufwendige Grundlagen-Implementationen aufzubrauchen und dafür mehr Zeit für die Problemlösung selbst zu finden.

In mehreren Teilen geht es bei uns hier deshalb rund um die Entwicklung: angefangen bei einem Einstieg in die Pythonprogrammierung über die Betrachtung gängiger Entwicklungstools und -frameworks bis hin zu Deep-Learning-Grundlagen und Implementation. Diese Reihe erlaubt es Programmierern ohne KI-Kenntnisse, startbereit für Deep Learning zu werden. An den einzelnen Teilen kann sequenziell teilgenommen werden, benötigte Kenntnisse in späteren Teilen werden in vorherigen Teilen vermittelt. Einzig für den ersten Teil sollten allgemeine Programmierkenntnisse vorhanden sein.

 

2: Python-Entwicklungstools für Deep Learning

In diesem Teil werden wichtige Python-Entwicklungswerkzeuge, welche relevant für Deep Learning sind, näher betrachtet. Diese umfassen:

- Gängige Python-Entwicklungsumgebungen

- Numpy

- Visualisierungstools

Inhalte werden interaktiv über Jupyter-Notebooks vermittelt. Übungen geben den Teilnehmern die Möglichkeit, erlernte Kenntnisse direkt anzuwenden.

 

Voraussetzungen:

Python-Grundkenntnisse wie z.B. aus unserem Online-Seminar "Python-Grundlagen für Deep Learning" (siehe Link am Ende der Beschreibung für Details)

 

Zielgruppe:

Python-Entwickler, die in Zukunft Deep Learning verwenden möchten.

 

Anmerkung:

Deep-Learning-Frameworks selbst sind Bestandteil der Deep-Learning-Grundlagen-Teile.

 

Details und Termine zu anderen Teilen dieses Schwerpunktes finden Sie hier.

Weitere Informationen
Dienstag06.10.2016:00-27.10.2017:30
Online
E-Learning Reihe - Einführung in Machine Learning und Data Science

Sie wollten schon immer einmal wissen, was hinter den Begriffen Künstliche Intelligenz, Machine Learning und Data Science steckt? In unserer E-Learning-Reihe im Oktober möchten wir Ihnen das Thema näherbringen und Ihnen ermöglichen erste Erfahrungen in diesem schnelllebigen Feld zu sammeln. Melden Sie sich jetzt kostenfrei an:

Ticket zur E-Learning Reihe


Künstliche Intelligenz, Machine Learning und Data Science sind aus der aktuellen technischen Entwicklung nicht mehr wegzudenken. Dabei bietet die Nutzung der eigenen Daten auch kleinen und mittleren Unternehmen neue Möglichkeiten, z. B. für die Optimierung der Produktion oder für ein besseres Verständnis über KundInnen. Im Jahr 2020 werden die Chancen dieser technologischen Entwicklung jedoch noch selten genutzt. Die Herausforderungen liegen hierbei in oft unzureichenden Kenntnissen über die Funktionsweise von Künstlicher Intelligenz und Machine Learning, sowie der der Einbettung von Data Science in die Prozesse des Unternehmens. 

Wir möchten aus diesem Grund mittelständigen Unternehmen den Einsatz von Methoden aus den Bereichen Machine Learning und Data Science im Rahmen unserer E-Learning-Reihe näherbringen. Hierfür werden wichtige Klassen von Machine Learning Algorithmen und grundlegende Data Science Prozesse vorgestellt. Weiterhin sollen beispielhafte Aufgabenstellungen mit Hilfe von Methoden aus den Bereichen Machine Learning und Data Science gelöst werden und die Ergebnisse anschließend visualisiert und interpretiert werden. Ergänzend möchten wir die Kenntnisse über Prozesse und Algorithmen vertiefen. Das gewonnene Wissen soll dann genutzt werden, um Anwendungsszenarien im eigenen Unternehmen zu explorieren und mit allen TeilnehmerInnen zu diskutieren. 

Im Anschluss an das E-Learning gibt es außerdem das Angebot einer Data Science Sprechstunde. Hier können die TeilnehmerInnen und Unternehmen die Themen und angestoßenen Entwicklungen diskutiert werden. 

 

Termine:

06.10.2020, 16:00 - 17:30 Uhr

- Einführung in das Themengebiet Künstliche Intelligenz

- Einführung in grundlegende Prozesse aus dem Bereich Data Science

13.10.2020, 16:00 - 17:30 Uhr

- Vorstellung verschiedener Algorithmen des Maschinellen Lernens

- Anwendung der Algorithmen mit ausgewählten Beispielen

- Interpretation und Darstellung der Ergebnisse

20.10.2020, 16:00 - 17:30 Uhr

- Praxisübungen mit beispielhaften Anwendungsszenarien (zum Mitmachen)

- Vorstellung verschiedener Tools für Maschinelles Lernen und Best Practices

27.10.2020, 16:00 - 17:30 Uhr

- Diskussion von Potentialen und Risiken des Maschinellen Lernens im eigenen Unternehmenskontext

- Reflektion über die gelernten Inhalte

- Fragerunde und Diskussion über weitere Schritte für die Zukunft

 

Ergänzende Informationen:

 

Für die Reihe werden keine Programmierkenntnisse vorausgesetzt.

Weitere Informationen
Mittwoch07.10.2014:00-18:00
Virtueller Workshop über Zoom
KI Trainer: KI Einsatz im Personalmanagement

Das Workshop-Angebot eröffnet mit einer grundlegenden Einführung in die künstliche Intelligenz für Nicht-Informatiker, in welcher ein grundlegendes Verständnis für Lernweisen von Maschinen und eine Sensibilisierung für informierte Entscheidungsfindungen gelegt wird. Praktisch wird vertieft, indem über Transparenz & Beherrschbarkeit vom Machine Learning, über Daten und Datenqualität, das Deployment und den Einsatz von Modellen und die letztliche User Experience seminarisch gesprochen wird. Den Abschluss bildet ein Anwendungsgebiet der KI in der Eignungsdiagnostik und dem Human-Ressource-Management, mitsamt notwendigen ethischen und moralischen Diskussionen. Ein Ausblick auf mögliche Entwicklungen der künstlichen Intelligenz beschließt das Workshop-Angebot.

Ort: Virtuelles Meeting über Zoom. Die Zugangsdaten erhalten die angemeldeten Teilnehmer per E-Mai.

Kostenlose Anmeldung

Weitere Informationen
Freitag09.10.2010:00-12:00
Online
KI-Trainer: Entwicklung - Grundlagen Deep Learning Teil 1

Hier anmelden

Mit den geeigneten Plattformen und Entwicklungswerkzeugen lassen sich KI-Projekte sehr schnell umsetzen. Insbesondere die vielversprechenden Deep-Learning-Technologien besitzen eine Vielzahl an Entwicklungstools, die es KI-Entwicklern erlauben, weniger Zeit für aufwendige Grundlagen-Implementationen aufzubrauchen und dafür mehr Zeit für die Problemlösung selbst zu finden.

In mehreren Teilen geht es bei uns hier deshalb rund um die Entwicklung: angefangen bei einem Einstieg in die Pythonprogrammierung über die Betrachtung gängiger Entwicklungstools und -frameworks bis hin zu Deep-Learning-Grundlagen und Implementation. Diese Reihe erlaubt es Programmierern ohne KI-Kenntnisse, startbereit für Deep Learning zu werden. An den einzelnen Teilen kann sequenziell teilgenommen werden, benötigte Kenntnisse in späteren Teilen werden in vorherigen Teilen vermittelt. Einzig für den ersten Teil sollten allgemeine Programmierkenntnisse vorhanden sein.

 

3: Deep-Learning-Grundlagen

In dieser mehrteiligen Reihe werden die Grundlagen von Deep Learning vermittelt. Angefangen bei einem einzelnen Neuron werden Schritt für Schritt Bestandteile moderner neuronaler Netze für die Klassifikation aufgezeigt und erklärt. Ein Einstieg in das größte Python-Framework für maschinelles Lernen "Tensorflow" wird gegeben, um anschließend gemeinsam einfache Modelle zu entwickeln. Die Inhalte umfassen unter anderem:

- Neuronaler Netzwerk-Aufbau

- Allgemeiner Lernprozess

- Gängige Optimierungsverfahren

- Gängige Leistungsmetriken

- Convolutional Neural Networks

- Tensorflow-Grundlagen

Die Inhalte über Jupyter-Notebooks vermittelt und anhand von Übungen gefestigt.

 

Voraussetzungen:

- Python-Grundkenntnisse wie z. B. aus unserem Online-Seminar "Python-Grundlagen für Deep Learning" (Details siehe Link am Ende der Beschreibung)

- Numpy-Kenntnisse wie z. B. aus unserem Online-Seminar "Python-Entwicklungstools für Deep Learning" (Details siehe Link am Ende der Beschreibung)

- Optional: Grundkenntnisse von KI – z. B. über einen Besuch unserer Schwerpunkt-1-Workshops, die es einem besser erlauben, die verwendeten Technologien einzuordnen.

 

Zielgruppe:

Python-Entwickler, die in Zukunft Deep Learning verwenden möchten.

 

Details und Termine zu anderen Teilen dieses Schwerpunktes finden Sie hier.

Weitere Informationen
Freitag09.10.2014:00-16:00
Online
KI-Trainer: Entwicklung - Grundlagen Deep Learning Teil 2

Hier anmelden

Mit den geeigneten Plattformen und Entwicklungswerkzeugen lassen sich KI-Projekte sehr schnell umsetzen. Insbesondere die vielversprechenden Deep-Learning-Technologien besitzen eine Vielzahl an Entwicklungstools, die es KI-Entwicklern erlauben, weniger Zeit für aufwendige Grundlagen-Implementationen aufzubrauchen und dafür mehr Zeit für die Problemlösung selbst zu finden.

In mehreren Teilen geht es bei uns hier deshalb rund um die Entwicklung: angefangen bei einem Einstieg in die Pythonprogrammierung über die Betrachtung gängiger Entwicklungstools und -frameworks bis hin zu Deep-Learning-Grundlagen und Implementation. Diese Reihe erlaubt es Programmierern ohne KI-Kenntnisse, startbereit für Deep Learning zu werden. An den einzelnen Teilen kann sequenziell teilgenommen werden, benötigte Kenntnisse in späteren Teilen werden in vorherigen Teilen vermittelt. Einzig für den ersten Teil sollten allgemeine Programmierkenntnisse vorhanden sein.

 

3: Deep-Learning-Grundlagen

In dieser mehrteiligen Reihe werden die Grundlagen von Deep Learning vermittelt. Angefangen bei einem einzelnen Neuron werden Schritt für Schritt Bestandteile moderner neuronaler Netze für die Klassifikation aufgezeigt und erklärt. Ein Einstieg in das größte Python-Framework für maschinelles Lernen "Tensorflow" wird gegeben, um anschließend gemeinsam einfache Modelle zu entwickeln. Die Inhalte umfassen unter anderem:

- Neuronaler Netzwerk-Aufbau

- Allgemeiner Lernprozess

- Gängige Optimierungsverfahren

- Gängige Leistungsmetriken

- Convolutional Neural Networks

- Tensorflow-Grundlagen

Die Inhalte über Jupyter-Notebooks vermittelt und anhand von Übungen gefestigt.

 

Voraussetzungen:

- Python-Grundkenntnisse wie z. B. aus unserem Online-Seminar "Python-Grundlagen für Deep Learning" (Details siehe Link am Ende der Beschreibung)

- Numpy-Kenntnisse wie z. B. aus unserem Online-Seminar "Python-Entwicklungstools für Deep Learning" (Details siehe Link am Ende der Beschreibung)

- Optional: Grundkenntnisse von KI – z. B. über einen Besuch unserer Schwerpunkt-1-Workshops, die es einem besser erlauben, die verwendeten Technologien einzuordnen.

 

Zielgruppe:

Python-Entwickler, die in Zukunft Deep Learning verwenden möchten.

 

Details und Termine zu anderen Teilen dieses Schwerpunktes finden Sie hier.

Weitere Informationen
Dienstag20.10.2010:00-12:00
Online
KI-Trainer: Entwicklung - Python-Grundlagen für Deep Learning Teil 1

Hier anmelden

Mit den geeigneten Plattformen und Entwicklungswerkzeugen lassen sich KI-Projekte sehr schnell umsetzen. Insbesondere die vielversprechenden Deep-Learning-Technologien besitzen eine Vielzahl an Entwicklungstools, die es KI-Entwicklern erlauben, weniger Zeit für aufwendige Grundlagen-Implementationen aufzubrauchen und dafür mehr Zeit für die Problemlösung selbst zu finden.

In mehreren Teilen geht es bei uns hier deshalb rund um die Entwicklung: angefangen bei einem Einstieg in die Pythonprogrammierung über die Betrachtung gängiger Entwicklungstools und -frameworks bis hin zu Deep-Learning-Grundlagen und Implementation. Diese Reihe erlaubt es Programmierern ohne KI-Kenntnisse, startbereit für Deep Learning zu werden. An den einzelnen Teilen kann sequenziell teilgenommen werden, benötigte Kenntnisse in späteren Teilen werden in vorherigen Teilen vermittelt. Einzig für den ersten Teil sollten allgemeine Programmierkenntnisse vorhanden sein.

 

1: Python-Grundlagen für Deep Learning

In dieser zweiteiligen Reihe werden die Grundlagen der Python-Programmierung als Basis für Deep Learning nähergebracht. Die folgenden Themen werden behandelt:

- Jupyter-Notebook-Grundlagen

- Die Syntax gängiger Python-Strukturen, u. a. Funktionen, Klassen, Variablen

- Python-Datenstrukturen (List, Dictionary, Tuple)

- Python-Module

Anhand von Jupyter-Notebooks werden die Inhalte interaktiv erarbeitet. Übungen im Laufe der Veranstaltung geben Teilnehmern die Möglichkeit, die Inhalte zu festigen.

 

Voraussetzungen:

Allgemeine Programmierkenntnisse: Teilnehmer sollten bereits Kenntnisse von einer anderen, objektorientierten Sprache mitbringen. So sollten folgende Fragen beantwortet werden können: Wie ist ein Programm aufgebaut? Was für Datentypen gibt es? Was sind Funktionen/Variablen/Ablaufstrukturen/Klassen?

 

Zielgruppe:

Entwickler ohne Pythonkenntnisse, die in Zukunft Deep-Learning-Algorithmen implementieren möchten.

 

Details und Termine zu anderen Teilen dieses Schwerpunktes finden Sie hier.

Weitere Informationen
Dienstag20.10.2014:00-16:00
Online
KI-Trainer: Entwicklung - Python-Grundlagen für Deep Learning Teil 2

Hier anmelden

Mit den geeigneten Plattformen und Entwicklungswerkzeugen lassen sich KI-Projekte sehr schnell umsetzen. Insbesondere die vielversprechenden Deep-Learning-Technologien besitzen eine Vielzahl an Entwicklungstools, die es KI-Entwicklern erlauben, weniger Zeit für aufwendige Grundlagen-Implementationen aufzubrauchen und dafür mehr Zeit für die Problemlösung selbst zu finden.

In mehreren Teilen geht es bei uns hier deshalb rund um die Entwicklung: angefangen bei einem Einstieg in die Pythonprogrammierung über die Betrachtung gängiger Entwicklungstools und -frameworks bis hin zu Deep-Learning-Grundlagen und Implementation. Diese Reihe erlaubt es Programmierern ohne KI-Kenntnisse, startbereit für Deep Learning zu werden. An den einzelnen Teilen kann sequenziell teilgenommen werden, benötigte Kenntnisse in späteren Teilen werden in vorherigen Teilen vermittelt. Einzig für den ersten Teil sollten allgemeine Programmierkenntnisse vorhanden sein.

 

1: Python-Grundlagen für Deep Learning

In dieser zweiteiligen Reihe werden die Grundlagen der Python-Programmierung als Basis für Deep Learning nähergebracht. Die folgenden Themen werden behandelt:

- Jupyter-Notebook-Grundlagen

- Die Syntax gängiger Python-Strukturen, u. a. Funktionen, Klassen, Variablen

- Python-Datenstrukturen (List, Dictionary, Tuple)

- Python-Module

Anhand von Jupyter-Notebooks werden die Inhalte interaktiv erarbeitet. Übungen im Laufe der Veranstaltung geben Teilnehmern die Möglichkeit, die Inhalte zu festigen.

 

Voraussetzungen:

Allgemeine Programmierkenntnisse: Teilnehmer sollten bereits Kenntnisse von einer anderen, objektorientierten Sprache mitbringen. So sollten folgende Fragen beantwortet werden können: Wie ist ein Programm aufgebaut? Was für Datentypen gibt es? Was sind Funktionen/Variablen/Ablaufstrukturen/Klassen?

 

Zielgruppe:

Entwickler ohne Pythonkenntnisse, die in Zukunft Deep-Learning-Algorithmen implementieren möchten.

 

Details und Termine zu anderen Teilen dieses Schwerpunktes finden Sie hier.

Weitere Informationen
Mittwoch21.10.2016:00-18:00
online
HCD für KI - Teil 1: Grundlagen UUX

Warum sollten Anwendungen Künstlicher Intelligenz menschzentriert und positiv erlebbar gestaltet werden und wie kann man dabei vorgehen? Darum geht es in dieser Webinarserie. Im ersten Teil werden die Grundlagen von Usability, User Experience (UX) und menschzentrierter Gestaltung (Human Centered Design, HCD) erklärt, Methoden zur Anwendung in den verschiedenen Phasen in der Übersicht dargestellt und Herausforderungen bei der Gestaltung von KI-Anwendungen diskutiert.

Hier kostenlos anmelden!

Weitere Informationen
Donnerstag22.10.2010:00-12:00
Online
KI-Trainer: Entwicklung - Python-Entwicklungstools für Deep Learning

Hier anmelden

Mit den geeigneten Plattformen und Entwicklungswerkzeugen lassen sich KI-Projekte sehr schnell umsetzen. Insbesondere die vielversprechenden Deep-Learning-Technologien besitzen eine Vielzahl an Entwicklungstools, die es KI-Entwicklern erlauben, weniger Zeit für aufwendige Grundlagen-Implementationen aufzubrauchen und dafür mehr Zeit für die Problemlösung selbst zu finden.

In mehreren Teilen geht es bei uns hier deshalb rund um die Entwicklung: angefangen bei einem Einstieg in die Pythonprogrammierung über die Betrachtung gängiger Entwicklungstools und -frameworks bis hin zu Deep-Learning-Grundlagen und Implementation. Diese Reihe erlaubt es Programmierern ohne KI-Kenntnisse, startbereit für Deep Learning zu werden. An den einzelnen Teilen kann sequenziell teilgenommen werden, benötigte Kenntnisse in späteren Teilen werden in vorherigen Teilen vermittelt. Einzig für den ersten Teil sollten allgemeine Programmierkenntnisse vorhanden sein.

 

2: Python-Entwicklungstools für Deep Learning

In diesem Teil werden wichtige Python-Entwicklungswerkzeuge, welche relevant für Deep Learning sind, näher betrachtet. Diese umfassen:

- Gängige Python-Entwicklungsumgebungen

- Numpy

- Visualisierungstools

Inhalte werden interaktiv über Jupyter-Notebooks vermittelt. Übungen geben den Teilnehmern die Möglichkeit, erlernte Kenntnisse direkt anzuwenden.

 

Voraussetzungen:

Python-Grundkenntnisse wie z.B. aus unserem Online-Seminar "Python-Grundlagen für Deep Learning" (siehe Link am Ende der Beschreibung für Details)

 

Zielgruppe:

Python-Entwickler, die in Zukunft Deep Learning verwenden möchten.

 

Anmerkung:

Deep-Learning-Frameworks selbst sind Bestandteil der Deep-Learning-Grundlagen-Teile.

 

Details und Termine zu anderen Teilen dieses Schwerpunktes finden Sie hier.

Weitere Informationen
Montag26.10.2010:00-12:00
Online
KI-Trainer: Entwicklung - Grundlagen Deep Learning Teil 1

Hier anmelden

Mit den geeigneten Plattformen und Entwicklungswerkzeugen lassen sich KI-Projekte sehr schnell umsetzen. Insbesondere die vielversprechenden Deep-Learning-Technologien besitzen eine Vielzahl an Entwicklungstools, die es KI-Entwicklern erlauben, weniger Zeit für aufwendige Grundlagen-Implementationen aufzubrauchen und dafür mehr Zeit für die Problemlösung selbst zu finden.

In mehreren Teilen geht es bei uns hier deshalb rund um die Entwicklung: angefangen bei einem Einstieg in die Pythonprogrammierung über die Betrachtung gängiger Entwicklungstools und -frameworks bis hin zu Deep-Learning-Grundlagen und Implementation. Diese Reihe erlaubt es Programmierern ohne KI-Kenntnisse, startbereit für Deep Learning zu werden. An den einzelnen Teilen kann sequenziell teilgenommen werden, benötigte Kenntnisse in späteren Teilen werden in vorherigen Teilen vermittelt. Einzig für den ersten Teil sollten allgemeine Programmierkenntnisse vorhanden sein.

 

3: Deep-Learning-Grundlagen

In dieser mehrteiligen Reihe werden die Grundlagen von Deep Learning vermittelt. Angefangen bei einem einzelnen Neuron werden Schritt für Schritt Bestandteile moderner neuronaler Netze für die Klassifikation aufgezeigt und erklärt. Ein Einstieg in das größte Python-Framework für maschinelles Lernen "Tensorflow" wird gegeben, um anschließend gemeinsam einfache Modelle zu entwickeln. Die Inhalte umfassen unter anderem:

- Neuronaler Netzwerk-Aufbau

- Allgemeiner Lernprozess

- Gängige Optimierungsverfahren

- Gängige Leistungsmetriken

- Convolutional Neural Networks

- Tensorflow-Grundlagen

Die Inhalte über Jupyter-Notebooks vermittelt und anhand von Übungen gefestigt.

 

Voraussetzungen:

- Python-Grundkenntnisse wie z. B. aus unserem Online-Seminar "Python-Grundlagen für Deep Learning" (Details siehe Link am Ende der Beschreibung)

- Numpy-Kenntnisse wie z. B. aus unserem Online-Seminar "Python-Entwicklungstools für Deep Learning" (Details siehe Link am Ende der Beschreibung)

- Optional: Grundkenntnisse von KI – z. B. über einen Besuch unserer Schwerpunkt-1-Workshops, die es einem besser erlauben, die verwendeten Technologien einzuordnen.

 

Zielgruppe:

Python-Entwickler, die in Zukunft Deep Learning verwenden möchten.

 

Details und Termine zu anderen Teilen dieses Schwerpunktes finden Sie hier.

Weitere Informationen
Montag26.10.2014:00-16:00
Online
KI-Trainer: Entwicklung - Grundlagen Deep Learning Teil 2

Hier anmelden

Mit den geeigneten Plattformen und Entwicklungswerkzeugen lassen sich KI-Projekte sehr schnell umsetzen. Insbesondere die vielversprechenden Deep-Learning-Technologien besitzen eine Vielzahl an Entwicklungstools, die es KI-Entwicklern erlauben, weniger Zeit für aufwendige Grundlagen-Implementationen aufzubrauchen und dafür mehr Zeit für die Problemlösung selbst zu finden.

In mehreren Teilen geht es bei uns hier deshalb rund um die Entwicklung: angefangen bei einem Einstieg in die Pythonprogrammierung über die Betrachtung gängiger Entwicklungstools und -frameworks bis hin zu Deep-Learning-Grundlagen und Implementation. Diese Reihe erlaubt es Programmierern ohne KI-Kenntnisse, startbereit für Deep Learning zu werden. An den einzelnen Teilen kann sequenziell teilgenommen werden, benötigte Kenntnisse in späteren Teilen werden in vorherigen Teilen vermittelt. Einzig für den ersten Teil sollten allgemeine Programmierkenntnisse vorhanden sein.

 

3: Deep-Learning-Grundlagen

In dieser mehrteiligen Reihe werden die Grundlagen von Deep Learning vermittelt. Angefangen bei einem einzelnen Neuron werden Schritt für Schritt Bestandteile moderner neuronaler Netze für die Klassifikation aufgezeigt und erklärt. Ein Einstieg in das größte Python-Framework für maschinelles Lernen "Tensorflow" wird gegeben, um anschließend gemeinsam einfache Modelle zu entwickeln. Die Inhalte umfassen unter anderem:

- Neuronaler Netzwerk-Aufbau

- Allgemeiner Lernprozess

- Gängige Optimierungsverfahren

- Gängige Leistungsmetriken

- Convolutional Neural Networks

- Tensorflow-Grundlagen

Die Inhalte über Jupyter-Notebooks vermittelt und anhand von Übungen gefestigt.

 

Voraussetzungen:

- Python-Grundkenntnisse wie z. B. aus unserem Online-Seminar "Python-Grundlagen für Deep Learning" (Details siehe Link am Ende der Beschreibung)

- Numpy-Kenntnisse wie z. B. aus unserem Online-Seminar "Python-Entwicklungstools für Deep Learning" (Details siehe Link am Ende der Beschreibung)

- Optional: Grundkenntnisse von KI – z. B. über einen Besuch unserer Schwerpunkt-1-Workshops, die es einem besser erlauben, die verwendeten Technologien einzuordnen.

 

Zielgruppe:

Python-Entwickler, die in Zukunft Deep Learning verwenden möchten.

 

Details und Termine zu anderen Teilen dieses Schwerpunktes finden Sie hier.

Weitere Informationen
Mittwoch28.10.2016:00-18:00
online
HCD für KI - Teil 2: Wizard-of-Oz Prototyping Workshop

Wie kann man Prototypen für KI-Anwendungen schnell und kostengünstig erstellen und testen? Ein Ansatz dafür, das Wizard-of-Oz Prototyping, wird in diesem Workshop vorgestellt, praktisch angewandt und diskutiert.

Zur Anmeldung

Die Wizard-of-Oz-Technik ist eine Methode, um die Interaktion zwischen einem Menschen und einem sich in der Entwicklung befindlichen System zu evaluieren. Dabei wird potentiellen Nutzern in einem experimentellen Setting suggeriert, mit dem zu testenden System zu interagieren. Da das System in dieser Entwicklungsphase technisch allerdings nur teilweise oder noch gar nicht umgesetzt ist, werden dessen Reaktionen in Wahrheit jedoch von einem Menschen – dem sogenannten „Wizard“ – simuliert. 

Im Workshop wird anhand eines beispielhaften Versuchsaufbaus aufgezeigt, wie ein Wizard of Oz-Prototyp zur Untersuchung von Mensch-Maschine-Interaktionen eingesetzt werden kann. Ziel ist die Vermittlung der theoretischen und praktischen Grundlagen der Methode, sodass die Workshopteilnehmer diese anschließend selbständig in ihren Unternehmen erproben können.

Weitere Informationen

November2020

Dienstag10.11.2010:00-14:00
Online
KI Trainer: Anwendungsszenario KI im Personalmanagement Digitaler Workshop im User Experience Labor

Motivation zur Entwicklung des Workshops
Im Rahmen des Workshop ‘KI im Personalmanagement’ demonstriert Dirk Johannßen den Einsatz eines Algorithmus zur Personalbeurteilung. Die Evaluationsergebnisse des KI-Workshops zeigen eine deutliche Nachfrage nach weiteren Praxisbeispielen. Diese Nachfrage nutzt das Mittelstand 4.0-Kompetenzzentrum Usability um das Leistungsportfolio zu erweitern. Aufgrund der Corona-Pandemie wird der Workshop für eine digitale Durchführung geplant.

Zielsetzung und Workload des Workshops
Das Ziel des Workshops besteht darin, den Teilnehmern anhand eines Vorstellungsgespräches den praktischen Einsatz von KI zu demonstrieren. Die Teilnehmer werden in die Lage versetzt, die Vorgehensweise des Algorithmus zu verstehen und auf eigene Tätigkeitsfelder zu reflektieren.

Workshopphase Einführung Durchführung Auswertung
Vermittelnde Kompetenzen Wissen, Verstehen Anwenden, Analyse, Synthese Beurteilen
Methode Fachliche Einführung Beobachten des Vorstellungsgespräches Besprechung der Ergeb-nisse
Dauer 120 Minuten 60 Minuten 60 Minuten
Hilfsmittel Webinarsystem Webinarsystem
User Experience Labor
Owl Labs (360° Kamera)
Webinarsystem

Ablauf des Workshops
Einführung
Die Workshopteilnehmer erhalten zu Beginn des Workshops eine Einführung in KI und die Vorgehensweise des Algorithmus. Im Anschluss wird ein Bewerbungsgespräch als typisches Anwendungsszenario in Unternehmen demonstriert. Das Gespräch ist durch ein Drehbuch vorbereitet. Anhand des Drehbuches wird die Auswertung des Algorithmus im Vorfeld durchgeführt.

Durchführung
Die Gesprächsteilnehmer befinden sich in dem User Experience Labor der NORDAKADEMIE. Die Workshopteilnehmer sind per Webinar zugeschaltet. Über eine installierte Deckenkamera können die Teilnehmer die Gesprächspartner aus der Vogelperspektive beobachten. Eine weitere 360° Kamera ermöglicht den Blick direkt auf die Teilnehmer um Mimik und Gestik zu verfolgen. Die Teilnehmer erhalten die Aufgabe, anhand des Gesprächsverlaufes eine Bewertung des Bewerbers durchzuführen.

Auswertung
Die Teilnehmer präsentieren sich und der Workshopleitung ihre Einschätzung im Plenum. Hierzu begründen sie, anhand welcher Merkmale die Einschätzung getroffen wurde. Im Anschluss präsentiert die Workshopleitung das Ergebnis des Algorithmus. Eine abschließende Diskussion zur Vorgehensweise und Abgleich der Ergebnisse beendet den Workshop

Jetzt kostenfrei anmelden

Weitere Informationen
Donnerstag12.11.20-
Online
World Usability Day Stuttgart

Am 12. November ist es endlich wieder soweit: Der World Usability Day (WUD) schreibt seine Erfolgsgeschichte fort! Auch in diesem Jahr wollen wir den Tag rund um Usability und User Experience (UX) wieder gebührend mit Ihnen feiern! Doch etwas ist anders dieses Jahr. Denn Corona macht auch vor dem WUD nicht halt. Keiner weiß, ob Ende des Jahres größere Veranstaltungen wieder möglich sind.

Daher findet der WUD Stuttgart 2020 erstmals remote statt.

Wir werden es sehr vermissen, dass wir uns nicht vor Ort mit Ihnen austauschen können. Aber wir erarbeiten aktuell ein Konzept, mit dem es uns hoffentlich gelingt, die wunderbare Atmosphäre des WUD in die digitale Welt zu übertragen.

Ein Remote WUD hat aber auch etwas Gutes: Egal wo Sie wohnen, studieren oder arbeiten – Sie können beim WUD Stuttgart dabei sein. Daher freuen wir uns, über viele Teilnehmende und Referent*innen aus ganz Deutschland und der Welt.

Nähere Infos zum Call for paper finden Sie hier, Informationen zur Teilnahme folgen in Kürze hier und auf der WUD Stuttgart Webseite.

Weitere Informationen
Donnerstag12.11.20-
Online
World Usability Day Leipzig

Das Kompetenzzentrum Usability ist dieses Jahr mit einem Vortrag zu Methoden der menschzentrierten Gestaltung von KI auch am WUD Leizip beteiligt – das Programm ist derzeit in Arbeit und weitere Updates folgen.

Weitere Informationen
 
KI-Trainer Schwerpunkt 7: Strategie
Rückblick: KI Trainer Online-Seminar KI Strategie am 22.07.2020
02.07.20
Am 22. Juli fand das KI-Trainer Strategie Seminar des Kompetenzzentrum Usability in Form eines Online-Seminars statt.
Mittwoch22.07.2014:00-17:00
Online
KI-Trainer Schwerpunkt 7: Strategie
Rückblick: KI Trainer Webinar KI Strategie am 24.06.2020
02.07.20
Am 24. Juni fand das KI-Trainer Strategie Seminar des Kompetenzzentrum Usability in Form eines Webinars statt.
Mittwoch22.07.2014:00-17:00
Online
Mittwoch24.06.2014:00-17:00
Online
KI-Trainer Schwerpunkt 1: Grundlagen, KI-Trainer Schwerpunkt 2: Entwicklung, KI-Trainer Schwerpunkt 4: Methodik, KI-Trainer Schwerpunkt 7: Strategie
Unser KI-Sommer 2020: Das Programm für Ihren Start in die KI-Entwicklung
30.06.20
Im Juli bieten wir Ihnen ein riesiges, einsteigerfreundliches Programm rund um Grundlagen und Entwicklung von Künstlicher Intelligenz (KI). Auch mit dabei: Ein virtueller Workshop zur Erprobung von Methoden der Menschzentrierten Gestaltung für KI und das Strategie-Seminar zur Integration von KI im Unternehmen. Starten Sie mit uns durch!
Montag26.10.2010:00-12:00
Online
Montag26.10.2014:00-16:00
Online
Donnerstag22.10.2010:00-12:00
Online
Dienstag20.10.2010:00-12:00
Online
Dienstag20.10.2014:00-16:00
Online
Freitag09.10.2010:00-12:00
Online
Freitag09.10.2014:00-16:00
Online
Dienstag06.10.2010:00-12:00
Online
Montag05.10.2010:00-12:00
Online
Montag05.10.2014:00-16:00
Online
Dienstag15.09.2010:00-12:00
Online
Dienstag15.09.2014:00-16:00
Online
Montag14.09.2010:00-12:00
Online
Donnerstag10.09.2010:00-12:00
Online
Donnerstag10.09.2014:00-16:00
Online
Dienstag04.08.2010:00-12:00
Online
Dienstag04.08.2014:00-16:00
Online
Freitag31.07.2010:00-12:00
Online
Mittwoch29.07.2010:00-12:00
Online
Mittwoch29.07.2014:00-16:00
Online
Donnerstag23.07.2010:00-12:30
Online
Mittwoch22.07.2010:00-12:30
Online
Mittwoch22.07.2014:00-17:00
Online
Dienstag21.07.2010:00-12:30
Online
Dienstag14.07.2010:00-12:30
Online
Donnerstag09.07.2010:00-12:30
Online
Dienstag07.07.2010:00-12:30
Online
Mittwoch24.06.2014:00-17:00
Online
Mittwoch20.05.2014:00-16:00
Online
KI-Trainer Schwerpunkt 1: Grundlagen
KI Grundlagen Online-Seminar-Reihe abgeschlossen
29.06.20
Vom 09.06. bis zum 18.06. wurde in drei 2-stündigen Teilen die Online-Seminar-Reihe „KI Grundlagen“ durchgeführt. Ziel war es, den Teilnehmenden einen ersten Einblick in die Bereiche der Künstlichen Intelligenz zu geben.
Region Süd
Von der Mensch-Maschine-Interaktion zur Mensch-KI-Kooperation
15.06.20
Im Zuge der Digitalisierung und in Zeiten Künstlicher Intelligenz (KI) verändert sich die Interaktion von Mensch und Maschine. Dieser Blogbeitrag beleuchtet den Paradigmenwechsel, bei dem sich die klassische Mensch-Maschine-Interaktion hin zur Mensch-KI-Kooperation wandelt.
KI-Trainer Schwerpunkt 4: Methodik
Ausschreibung: Pilotprojekt zu menschzentrierter Gestaltung einer KI-Anwendungsidee
26.05.20
Sie möchten einen Anwendungsfall für Künstliche Intelligenz (KI) in Ihrem Unternehmen finden oder haben bereits eine Idee, die sie gerne umsetzen würden? Erfahren Sie in einem Pilotprojekt mit uns, wie Sie dabei vorgehen können und die Idee so ausgestalten, dass daraus eine benutzerfreundliche und positiv erlebbare KI-Anwendung für Ihre Kunden oder Mitarbeiter entstehen kann.
Vortrag: Hallo KI - Muss ich mir Sorgen machen?, 2. KI Info-Slam, KI Info-Slam
KI Info-Slam am 3. September
12.05.20
Der KI Info Slam ist unser virtuelles Treffen für alle, die sich für Künstliche Intelligenz (KI) interessieren und KI im Unternehmen einsetzen wollen. Hier bieten wir Ihnen kurze Vorträge zu KI-Themen und unseren KI-Weiterbildungsangeboten sowie die Gelegenheit, Fragen an die Experten zu stellen und Erfahrungen auszutauschen. Alles kompakt innerhalb von einer Stunde am Vormittag.
Donnerstag03.09.2011:00-12:00
Online
Donnerstag25.06.2011:00-12:15
Online
Donnerstag28.05.2011:00-12:00
Online
KI-Trainer Schwerpunkt 4: Methodik
KI-Trainer: Ein Rückblick auf die ersten UUX-Lab Workshops
12.05.20
Die KI-Trainer Workshops werden mit viel Mühe für Sie vorbereitet und so sind wir sehr daran interessiert, Ihre Meinung und Anmerkungen zu erfahren. In den letzten Monaten wurden verschiedene Workshops angeboten und von den Teilnehmenden anhand eines Fragebogens Feedback eingeholt. Im Allgemeinen wurde das Angebot sehr positiv wahrgenommen.
Abgeschlossene E-Learning-Reihe als Einführung in Data Science & Maschinelles Lernen
11.05.20
Vom 01.04. bis zum 15.04.2020 fand in vier 1,5-stündigen Sessions die E-Learning Reihe „Einführung in Data Science & Maschinelles Lernen“ statt. Ziel war es, den Teilnehmenden zu helfen, wertvolle Fähigkeiten in den Bereichen Data Science und Maschinelles Lernen zu entwickeln.
5. Video der Tutorial-Reihe zur Erstellung eines Chatbots auf YouTube
11.05.20
Wer während der Home Office Zeit lernen möchte einen eigenen Chatbot zu entwicklen, kann mit unserer kleinen Tutorial-Reihe auf YouTube in das Thema einsteigen. In den kommenden Wochen werden wir weitere Video posten, die Schritt für Schritt beim Eigenbau Chatbot unterstützen.
1
2
3
4
5
6
 
 
Copyright